skip to main content


Search for: All records

Creators/Authors contains: "DeGrandpre, Michael D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ocean Acidification (OA) is negatively affecting the physiological processes of marine organisms, altering biogeochemical cycles, and changing chemical equilibria throughout the world’s oceans. It is difficult to measure pH broadly, in large part because accurate pH measurement technology is expensive, bulky, and requires technical training. Here, we present the development and evaluation of a hand-held, affordable, field-durable, and easy-to-use pH instrument, named the pHyter, which is controlled through a smartphone app. We determine the accuracy of pH measurements using the pHyter by comparison with benchtop spectrophotometric seawater pH measurements, measurement of a certified pH standard, and comparison with a proven in situ instrument, the iSAMI-pH. These results show a pHyter pH measurement accuracy of ±0.046 pH or better, which is on par with interlaboratory seawater pH measurement comparison experiments. We also demonstrate the pHyter’s ability to conduct both temporal and spatial studies of coastal ecosystems by presenting data from a coral reef and a bay, in which the pHyter was used from a kayak. These studies showcase the instrument’s portability, applicability, and potential to be used for community science, STEM education, and outreach, with the goal of empowering people around the world to measure pH in their own backyards. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Spatial and temporal carbonate chemistry variability on coral reefs is influenced by a combination of seawater hydrodynamics, geomorphology, and biogeochemical processes, though their relative influence varies by site. It is often assumed that the water column above most reefs is well-mixed with small to no gradients outside of the benthic boundary layer. However, few studies to date have explored the processes and properties controlling these multi-dimensional gradients. Here, we investigated the lateral, vertical, and temporal variability of seawater carbonate chemistry on a Bermudan rim reef using a combination of spatial seawater chemistry surveys and autonomous in situ sensors. Instruments were deployed at Hog Reef measuring current flow, seawater temperature, salinity, pH T , p CO 2 , dissolved oxygen (DO), and total alkalinity (TA) on the benthos, and temperature, salinity, DO, and p CO 2 at the surface. Water samples from spatial surveys were collected from surface and bottom depths at 13 stations covering ∼3 km 2 across 4 days. High frequency temporal variability in carbonate chemistry was driven by a combination of diel light and mixed semi-diurnal tidal cycles on the reef. Daytime gradients in DO between the surface and the benthos suggested significant water column production contributing to distinct diel trends in pH T , p CO 2 , and DO, but not TA. We hypothesize these differences reflect the differential effect of biogeochemical processes important in both the water column and benthos (organic carbon production/respiration) vs. processes mainly occurring on the benthos (calcium carbonate production/dissolution). Locally at Hog Reef, the relative magnitude of the diel variability of organic carbon production/respiration was 1.4–4.6 times larger than that of calcium carbonate production/dissolution, though estimates of net organic carbon production and calcification based on inshore-offshore chemical gradients revealed net heterotrophy (−118 ± 51 mmol m –2 day –1 ) and net calcification (150 ± 37 mmol CaCO 3 m –2 day –1 ). These results reflect the important roles of time and space in assessing reef biogeochemical processes. The spatial variability in carbonate chemistry parameters was larger laterally than vertically and was generally observed in conjunction with depth gradients, but varied between sampling events, depending on time of day and modifications due to current flow. 
    more » « less
  4. Rapid climate warming and sea-ice loss have induced major changes in the sea surface partial pressure of CO2 ( pCO2I). However, the long-term trends in the western Arctic Ocean are unknown. Here we show that in 1994–2017, summer pCO2I in the Canada Basin increased at twice the rate of atmospheric increase. Warming and ice loss in the basin have strengthened the pCO2I seasonal amplitude, resulting in the rapid decadal increase. Consequently, the summer air–sea CO2 gradient has reduced rapidly, and may become near zero within two decades. In contrast, there was no significant pCO2I increase on the Chukchi Shelf, where strong and increasing biological uptake has held pCO2I low, and thus the CO2 sink has increased and may increase further due to the atmospheric CO2 increase. Our findings elucidate the contrasting physical and biological drivers controlling sea surface pCO2I variations and trends in response to climate change in the Arctic Ocean. 
    more » « less
  5. Abstract

    Total alkalinity (AT) is an important parameter in the study of aquatic biogeochemical cycles, chemical speciation modeling, and many other important fundamental and anthropogenic (e.g., industrial) processes. We know little about its short‐term variability, however, because studies are based on traditional bottle sampling typically with coarse temporal resolution. In this work, an autonomous ATsensor, named the Submersible Autonomous Moored Instrument for Alkalinity (SAMI‐alk), was tested for freshwater applications. A comprehensive evaluation was conducted in the laboratory using freshwater standards. The results demonstrated excellent precision and accuracy (± 0.1%–0.4%) over the ATrange from 800 to 3000 μmol L−1. The system had no drift over an 8 d test and also demonstrated limited sensitivity to variations in temperature and ionic strength. Three SAMI‐alks were deployed for 23 d in the Clark Fork River, Montana, with a suite of other sensors. Compared to discrete samples, in situ accuracy for the three instruments were within 10–20 μmol L−1(0.3–0.6%), indicating good performance considering the challenges of in situ measurements in a high sediment, high biofouling riverine environment with large and rapid changes in temperature. These data reveal the complex ATdynamics that are typically missed by coarse sampling. We observed ATdiel cycles as large as 60–80 μmol L−1, as well as a rapid change caused by a runoff event. Significant errors in inorganic carbon system modeling result if these short‐term variations are not considered. This study demonstrates both the feasibility of the technology and importance of high‐resolution ATmeasurements.

     
    more » « less